
EVR Usage Guide

Mihael Davidsaver <mdavidsaver�gmail.om>

August. 2017, Rev. 8

Contents

1 What is Available? 3

1.1 Prerequisites . 3

1.2 Soure . 4

1.3 Supported Hardware . 4

2 System Overview 4

2.1 Event Link Data . 6

2.2 Global Time Distribution . 7

3 Reeiver Funtions 8

3.1 Pulse Generators . 8

3.2 Event Mapping Ram . 9

3.3 Presalers (Clok Divider) . 9

3.4 Outputs (TTL) . 9

3.5 Outputs (CML and GTX) . 10

3.6 Inputs . 10

3.7 Global Timestamp Reeption . 10

3.8 Data Bu�er Tx/Rx . 11

4 IOC Deployment 11

4.1 Devie names . 11

4.2 VME64x Devie Con�guration 11

4.3 PCI Devie Con�guration . 12

4.4 PCI Setup in Linux . 12

4.5 Example Databases . 13

1

5 Testing Proedures 15

5.1 EVG and EVR Chekout . 15

5.2 Timestamp Test . 17

6 Firmware Update 19

6.1 PCIe-EVR-300DC, mTCA-EVR-300 19

6.2 VME EVRs and EVGs . 20

6.3 PCI-EVRTG-300 . 20

6.4 PMC-EVR-230 . 20

7 NTPD Time Soure 24

8 Implementation Details 25

8.1 Event ode FIFO Bu�er . 25

8.2 Data Bu�er reeption . 26

8.3 Timestamp validation . 26

9 EVR Devie Support Referene 27

9.1 Global . 28

9.2 EVG funtions (DC �rmware) . 33

9.3 SFP . 33

9.4 Pulse Generator . 34

9.5 Presaler (Clok Divider) . 35

9.6 Output (TTL and CML) . 35

9.7 Output (CML/GTX only) . 36

9.8 Input . 39

9.9 Event Mapping . 40

9.10 Database Events . 42

9.11 Data Bu�er Rx . 43

9.12 Data Bu�er Tx . 43

2

1 What is Available?

More infomation on the Miro Researh hardware an be found on their website

http://www.mrf.fi/.

The software disussed below an be found on the EPICS appliation projet

on SoureForge http://soureforge.net/projets/epis/.

The latest developments an be found in the 'mr�o2' Git VCS repository.

https://github.om/epis-modules/mrfio2

1.1 Prerequisites

Build system required modules

EPICS Base >= 3.14.10 EPICS Core

http://www.aps.anl.gov/epis/base/R3-14/index.php

MSI Maro expansion tool (Base <3.15.0 only)

http://www.aps.anl.gov/epis/extensions/msi/index.php

devLib2 >= 2.9 PCI/VME64x Hardware aess library

https://github.om/epis-modules/devlib2/

Build system optional modules. Not required, but highly reommended.

autosave Automati save and restore on boot

http://www.aps.anl.gov/bda/synApps/autosave/autosave.html

iostats Runtime IOC statistis (CPU load, . . .)

http://www.sla.stanford.edu/omp/unix/pakage/epis/site/devIoStats/

http://soureforge.net/projets/epis/files/devIoStats/

Target operating system requirements

RTEMS >= 4.9.x

vxWorks >=6.7

Linux >= 3.2.1 (earlier versions may work)

3

http://www.mrf.fi/
http://sourceforge.net/projects/epics/
https://github.com/epics-modules/mrfioc2
http://www.aps.anl.gov/epics/base/R3-14/index.php
http://www.aps.anl.gov/epics/extensions/msi/index.php
https://github.com/epics-modules/devlib2/
http://www.aps.anl.gov/bcda/synApps/autosave/autosave.html
http://www.slac.stanford.edu/comp/unix/package/epics/site/devIocStats/
http://sourceforge.net/projects/epics/files/devIocStats/

1.2 Soure

VCS Chekout

$ g i t lone https : // github . om/ epis−modules/mrf io2 . g i t

Edit 'on�gure/CONFIG_SITE' and 'on�gure/RELEASE' then run "make".

The following is a brief tour of the important loations in the soure tree relating

to the EVR.

1.3 Supported Hardware

The following devies are supported.

Name # FP

a

FP UNIV

b

FP Inputs

RTM

d

VME-EVR-230

e

4 4 2 Yes

VME-EVR-230RF 7

f

2 2 Yes

PMC-EVR-230 3 0 1 No

CPCI-EVR-230 0 4 2 Yes

g

PCI-EVRTG-300 2

h

2 1

i

No

PCI-EVR-300 0 12 2 0

PCIe-EVR-300DC 0 0 0 16

mTCA-EVR-300

j

4 4/0 2 0/16

a

Front panel outputs (TTL)

b

Front panel universal output sokets

Front panel inputs

d

Supports Rear Transition Module

e

This devie has not been tested

f

Outputs 4,5,6 are CML

g

Supports PCI side-by-side module

h

GTX outputs

i

Speial GTX interlok

j

Two hardware �avors exist, one with 2x UNIV I/O sokets, the other with an IFB-300

onnetor,

2 System Overview

The purpose of this doument is to at as a guide and referene when using the

'mr�o2' EPICS support module for the Miro Researh Finland (MRF) timing

system

1

. It desribes software for using the Event Generator (EVG) and Event

Reeiver (EVR).

The MRF Event Timing System an be deployed in two on�gurations (Fig. 1).

The �rst is a unidiretional broadast from a single soure (EVG) to multiple

1

List of supported hardware given in setion 1.3.

4

destinations (EVRs). The Repeater devies simply retransmit its single input

to all outputs (one to many). In the seond on�guration a return path from

many EVRs bak up to single entral (master) EVR is added.

An EVR will at in one of two roles: either Leaf or Master. The Master EVR is

neessary beause, while the generator (EVG) is apable of reeiving an event

stream, it does not impliment the features of the reeiver (EVR).

EVG

EVR

Repeater ConcentratorRepeater

EVREVR

Repeater

Configuration 1

EVG

EVR EVREVR

Concentrator

Configuration 2

EVR

Concentrator

Figure 1: Two system on�gurations for the MRF Timing System

What is transmitted over the event link is a ombination of 8-bit event odes

and data. Data an take the form of a single 8-bit byte whih is simply opied

from sender to reeiver (the Distributed Bus or DBus), and optionally a variable

length byte array (Data Bu�er).

These two types of data an be ombined in two ways (Fig. 2) depending on

whether or not the Data Bu�er feature is used. In on�guration A every 16-

bit frame is split between an 8-bit event and the 8-bit Distributed Bus. In

on�guration B every frame arries an 8-bit event with the Distributed Bus or

a Data Bu�er byte sent in alternating frames.

In addition to data, the use of 8b10b enoding on the event link allows the loal

osillator of eah EVR to be phase loked to a referene sent by the EVG. The

EVG itself is typially driven from an external osillator.

When disussing the MRF timing system there are three loks. The external

referene lok for the EVG, the bit lok for transeivers, and the Event Clok.

The relation between the referene and the Event loks is determined by a

programmable divider in the EVG and is usually a small integer number (eg.

4). The Event lok must be in the range between 50MHz and 125MHz. The

Event# DBus

Data Buf

8-bits 8-bits

Event#

Event#

Event#

8-bits 8-bits

DBus

DBus

A B

Frame N

Frame N+1

Figure 2: Two supported link alloation shemes

5

relation between the Event lok and the bit lok is a �xed fator of 20 whih

is determined by the frame size desribed above.

Fbit/20 = FEvent = FExt/NDivide

2.1 Event Link Data

Data whih is transferred over the event link is interpreted in four ways: Event

Codes, DBus bits, Data Bu�ers, and Clok Phase. Eah arries a di�erent

meaning, and is used in di�erent ways.

2.1.1 Event Codes

An event is momentary. Typially an event auses something to happen (a

trigger). The 255 usable event odes available in the MRF system an be thought

of as 255 seperate physial wires. On every tik of the Event Clok a pulse is

sent on one (and only one) of the �wires�. Zero is the �idle� event whih is sent

when no other event is queued.

Event Codes will most often be used as triggers for external delay hannels.

However, there are a number of event odes whih have speial meaning in the

MRF system. The meaning of all other odes is left to the system operator.

Code Meaning

0x00 Idle, or null, event. Send when nothing happens.

0x70 Shift 0 into EVR timestamp shift register

0x71 Shift 1 into EVR timestamp shift register

0x7A Reset EVR heartbeat timeout ounter

0x7B Reset all EVR dividers. Synhronize global phase

0x7C Inrement EVR timestamp ounter (depending on mode)

0x7D Reset timestamp ounter

0x7F End of sequene (not transmitted). Use in other ontexts is disouraged.

Table 1: Speial Event odes

2.1.2 Distributed Bus (DBus) bits

The Distributed Bus (DBus) onsists of 8 bits of data whih are stored on every

EVR. This data is initialized to zero when the EVR starts, and overwritten

whenever the EVR reeives an event frame with DBus data. Depending on

on�guration this is either every frame, or every seond frame (See �g. 2).

The DBus an thus be used to distribute either periodi, or non-periodi, signals

with bandwidth up to

1

2
(or

1

4
) of the Event lok.

6

The bits of the DBus an be routed to physial output. A speial feature of

DBus bit 4 allows its rising edge to inrement the timestamp ounter (depending

on mode).

2.1.3 Data Bu�ers

When enabled, a protool is used to broadast arbitrary byte arrays from the

EVG to all EVRs. Bytes are sent one at a time in the data part of every seond

frame. Speial 8b10b odes are used to mark the beginning and end for eah

transfer. A simple heksum is also sent. The 230 series hardware allows bu�ers

up to 2047 bytes in length.

In keeping with the onvention of the original MRF EPICS Support pakage

the �rst byte of a bu�er is used as a header (Protool ID) to identify it. No

restritions are plaed on the body of bu�er.

2.1.4 Event Clok Phase

The use of 8b10b enoding allows eah EVR's loal osillator to lok to the

EVG's referene lok. This allows operation at speeds higher then the event

lok rate. This is used by the CML outputs desribed in setion 3.5.

2.2 Global Time Distribution

The model of time implemented by the MRF hardware is two 32-bit unsigned

integers: ounter, and �seonds�. The ounter is maintained by eah EVR and

inremented quikly. The value of the �seonds� is sent periodially from the

EVG at a lower rate.

During eah �seond� 33 speial odes (see se. 1) must be sent. The �rst 32

are the shift 0/1 odes whih ontain the value of the next �seond�. The last is

the timestamp reset event. When reeived this ode transfers the new �seond�

value out of the shift register, and resets the ounter to zero. These ations

start the next �seond�.

Note that while it is referred to as �seonds� this value is an arbitrary integer

whih an have other meanings. Currently only one time model is implemented,

but implementing others is possible.

2.2.1 Light Soure Time Model

In this model the �seonds� value is an atual 1Hz ounter. The software default

is the POSIX time of seonds sine 1 Jan. 1970 UTC. Eah new seond is started

with a trigger from an external 1Hz osillator, usually a GPS reeiver. Most

7

Downstream

 Event Link

Event Codes DBusClock Phase

Mapping RAM

Pulse Generators
 Special

Functions

Prescaler/

 Dividers

Inputs Outputs

Upstream

Event Link

Event Codes DBus

Figure 3: Logial onnetions inside an EVR

GPS reeivers have a one pulse per seond (PPS) output. Time is onverted to

the EPICS epoh (1 Jan. 1990) for use in the IOC.

Several methods of sending the seonds value to the EVG are possible:

External hardware has been reated by Diamond light soure whih om-

muniates with a GPS reeiver over a serial (RS232) link to reeive the times-

tamp and onnets to two external inputs on the EVG. These inputs must be

programmed to send the shift 0/1 odes.

Time from an NTP server an be used without speial hardware. This

requires only a 1Hz (PPS) signal oming from the same soure as the NTP

time. Several ommerial vendors supply dediated NTP servers with builtin

GPS reeivers and 1Hz outputs. A software funtion is provided on the EVG

whih is triggered by the 1Hz signal. At the start of eah seond it sends the

next seond (urrent+1), whih will be lathed after the following 1Hz tik.

3 Reeiver Funtions

Internally an EVR an be thought of as a number of logial sub-units (Fig. 3)

onneting the upstream and downstream event links to the loal inputs and

outputs. These sub-units inlude: the Event Mapping Ram, Pulse Generators,

Presalers (lok dividers), and the logial ontrols for the physial inputs and

outputs.

3.1 Pulse Generators

Eah pulse generator has a an assoiated Delay, Width, Polarity (ative low/high),

and (sometimes) a Presaler (lok divider). When triggered by the Mapping

8

Ram it will wait for the Delay time in its inative state. Then it will transi-

tion to its ative state, wait for the Width time before transitioning bak to its

inative state.

Resolution of the delay and width is determined by the presaler. A setting of

1 gives the best resolution.

In addition, the Mapping Ram an fore a Pulse Generator into either state

(Ative/Inative).

Note: Some Pulse Generators do not have a presaler. In this ase the

presaler property will always read 0 instead of >=1.

3.2 Event Mapping Ram

The Event Mapping Ram is a table used to de�ne the ations to be taken by an

EVR when it reeives a partiular event ode number. The mapping it de�nes is

a many-to-many relations. One event an ause several ations, and one ation

an be aused by several events.

The ations whih an be taken an be grouped into two atagories: Speial

ations, and Pulse Generator ations. Speial ations inlude those related to

timestamp distribution, and the system heartbeat tik (see � 9.9.2 on page 41

for a omplete list). Eah Pulse Generater has three mapable ations: Set

(fore ative), Reset (fore inative), and Trigger (start delay program). Most

appliations will use Trigger mappings.

3.3 Presalers (Clok Divider)

Presaler sub-units take the EVR's loal osillator and output a lower frequeny

lok whih is phased loked to the loal lok, whih is in syn with the global

master lok. The lower frequeny must be an integer divisor of the Event lok.

To provide known phase relationships, all dividers an be synhronously reset

when a mapped event ode is reeived. This is the Reset PS ation. See 9.9.2

on page 41.

3.4 Outputs (TTL)

This sub-unit represents a loal physial output on the EVR. Eah output may

be onneted to one soure: a Distributed Bus bit, a Presaler, or a Pulse

Generator (see � 9.6.1 on page 36 for a omplete list).

9

3.5 Outputs (CML and GTX)

Current Mode Logi outputs an send a bit pattern at the bit rate of the event

link bit lok (20x the Event Clok). This pattern may be spei�ed in one of

three possible ways.

As four 20 bit sub-patterns (rising, high, falling, and low). As two periods (high

and low). These speify a square wave with variable frequeny and duty fator.

As an arbitrary bit pattern (<= 40940 bits) whih begins when the output goes

[TODO: high or low?℄.

In the sub-pattern mode. The rising and falling patterns are transmitted when

the output level hanges, while the high and low patterns are repeated in be-

tween level hanges.

The GTX outputs found only on the EVRTG (e−gun) reeiver funtion similarly
to the CML outputs at twie the frequeny. Thus for this devie patterns are

40 bits.

3.6 Inputs

An EVR's loal TTL input an ause several ations when triggered. It may be

diretly onneted to one of the upstream Distributed Bus bits, it may ause an

event to be sent on the upstream links, or applied to the loal Mapping Ram.

The rising edge of a loal input an be timestamped.

3.7 Global Timestamp Reeption

Eah EVR reeives synhronous time broadasts from an EVG. Software may

query the urrent time at any point. The arrival time of ertain event odes

an be saved as well. This an be aomplished with the 'event' reord devie

support.

Eah EVR may be on�gured with a di�erent method of inrementing the times-

tamp ounter. See setion 9.1.12.

In addition to being slaved to an EVG, those EVR models/�rmware whih

provide a Software Event transmission funtion an send timestamps as well.

This an be used to simulate timestamps in a standalone environment suh as

a test lab. see the TimeSr property in 9.2 on page 33.

TimeSr=0 The default, whih disables EVR timestamp generation.

TimeSr=1 In External mode the EVR will send a timestamp when event 125

is reeived. Reeption of 125 an be either from an input, or for DC EVRs

the sequener.

TimeSr=2 In Sys Clok mode, the EVR will generate a software 125 event

based on the system lok. This is the simplest standalone mode.

10

3.8 Data Bu�er Tx/Rx

A reipient an register allbak funtions for eah Protool ID. It will then be

shown the body of every bu�er arriving with this ID.

A default reipient is provided whih stores data in a waveform reord.

4 IOC Deployment

This setion outlines a general strategy for adding an EVR to an IOC. First

general information is presented, followed by a setion desribing the extra steps

needed to use mr�o2 under Linux.

An example IOC shell sript is inluded as �ioBoot/ioevrmrm/st.md�.

4.1 Devie names

All EVGs and EVRs in an IOC are identi�ed by an unique name. This is �rst

given in the IOC shell funtions desribed below, and repeated in the INP or

OUT �eld of all database reords whih referene it. Both EVGs, and EVRs

share the same namespae. This restrition is needed sine some ode is shared

between these two devies.

4.2 VME64x Devie Con�guration

The VME bus based EVRs and EVGs are on�gured using one of the following

IOC shell funtions.

Reeiver

mrmEvrSetupVME("anEVR" , 3 , 0 x30000000 , 4 , 0x28)

In this example EVR �anEVR� is de�ned to be the VME ard in slot 3. It is

given the A32 base address of 0x30000000 and on�gured to interrupt on level

4 with vetor 0x28.

Note: VME64x allows for jumpless on�guration of the ard, but not auto-

matially assignment of resoures. Seletion of an unused address range and

IRQ level/vetor is neessarily left to the user.

Note: Before setup is done the VME64 identifer �elds are veri�ed so that

speifying an inorret slot number is deteted and setup will safely abort.

11

4.3 PCI Devie Con�guration

PCI bus ards are identi�ed with the mrmEvrSetupPCI() IOC shell funtion.

Sine PCI devies are automatially on�gured only the geographi address

(bus:devie.funtion) needs to be provided. This information an usually be

found at boot time (RTEMS) or in /pro/bus/pi/devies (Linux).

The IOC shell funtion devPCIShow() is also provided to list PCI devies in

the system.

Reeiver

mrmEvrSetupPCI ("PMC" , "1:2.0")

This example de�nes EVR �PMC� to be bus 1 devie 2 funtion 0.

Support for using mTCA slot number is available on some targets (Linux only

as of devlib2 2.9). This does any automati lookup of PCI address from slot

number. Be aware that PCIe �slot� numbers, while stable aross reboots, may

hange with hardware on�guration, �rmware, or OS upgrades.

mrmEvrSetupPCI ("PMC" , " s l o t =5")

Note: Before setup is done the PCI identifer �elds are veri�ed so that spei-

fying an inorret loation is deteted and setup will safely abort.

4.4 PCI Setup in Linux

In order to use PCI EVRs in the Linux operating system a small kernel driver

must be built and loaded. The soure for this driver is found in 'mrmShared/lin-

ux/'. This diretory ontains a Make�le for use by the Linux kernel build system

(not EPICS).

To build the driver you must have aess to a on�gured opy of the kernel soure

used to build the target system's kernel. If the build and target systems use the

same kernel, then the loation will likely be '/lib/modules/`uname -r`/build'. In

ase of a ross-built kernel the loation will be elsewhere.

To build the module for use on the host system:

$ make −C / l o a t i o n / o f /mrmShared/ l inux \

KERNELDIR=/ l i b /modules / `uname −r ` / bu i ld modu le s_ins ta l l

$ sudo depmod −a

$ sudo modprobe mrf

Building for a ross-target might look like:

12

$ make −C / l o a t i o n / o f /mrmShared/ l inux \

KERNELDIR=/l o a t i o n / o f / k e rn e l / s r \

ARCH=arm CROSS_COMPILE=/usr / loal /bin /arm− \

INSTALL_MOD_PATH=/l o a t i o n / o f / t a r g e t / root \

modu le s_ins ta l l

One the module is installed on the running target the speial devie �le asso-

iated with eah EVR must be reated. If your target system is running UDEV

this will happen automatially. See mrmShared/linux/README for example

UDEV on�g. If UDEV is not present, then you must do the following.

grep mrf /pro/ dev i e s

254 mrf

mknod −m 666 /dev/ uio0 254 0

If may be neessary to hange the �le permission to allow the IOC proess

to open it. UDEV users may �nd one of the following ommands useful for

onstruting a rules �le.

udevinfo −a −p $ (udevinfo −q path −n /dev/uio0)

udevadm in f o −a −p $ (udevadm i n f o −q path −n /dev/ uio0)

Eah additional devie adds one to the number (uio1, uio2, ...).

One the devie �le exists with the orret permissions the IOC will be able to

loation it based on the bus:devie.funtion given an to mrmEvrSetupPCI().

Note: UIO numbers are not onsidered during setup sine these may hange

after a reboot. To ensure repeatability only PCI immutable ID �elds, PCIe

�slot� numbers, the address triplet (bus:devie.funtion) are used.

4.5 Example Databases

The MRFIOC2 module inludes example database templates for all supported

devies (see �1.3). While eah is fully funtional, it is expeted that most sites

will make modi�ations. It is suggested that the original be left unhanged

and a opy be made with the institute name and other information as a su�x.

(evr-pm-230.substitutions beomes evr-pm-230-nsls2.substitutions).

The authors would like to enourage users to send their ustomized databases

bak so that they may be inluded as examples in future releases of MRFIOC2.

The templates onsist of a substitutions �le for eah model (PMC, PCI, VME-

RF). This template instaniates the orret number of reords for the input-

s/outputs found on eah devie. It also inludes entries for event mappings and

database events whih will be frequent targets for ustomization.

13

Eah substitutions �le will be expanded during the build proess with the MSI

utility to reate a database �le with two unde�ned maros (P and C). 'SYS'

and 'D' de�ne a ommon pre�x shared by all PVs and must be unique in the

system. 'EVR' is a ard name also given as the �rst argument of one of the

mrmEvrSetup*() IOC shell funtions (unique in eah IOC).

Thus an IOC with two idential VME ards ould use a on�guration like:

mrmEvrSetupVME("evr1" , 5 , 0 x20000000 , 3 , 0 x26)

mrmEvrSetupVME("evr2" , 6 , 0 x21000000 , 3 , 0 x28)

dbLoadReords ("evr−vmerf−230.db" , "SYS=test , D=evr : a , EVR=evr1")

dbLoadReords ("evr−vmerf−230.db" , "SYS=test , D=evr :b, EVR=evr2")

4.5.1 autosave

All example database �les inlude �info()� entries to generate autosave request

�les. The example IOC shell sript �ioBoot/ioevrmrm/st.md� inludes the

following to on�gure autosave.

save_restoreDebug (2)

dbLoadReords (" db/ save_res to reSta tus . db" , "P=mrf te s t : ")

save_res to reSe t_status_pre f ix (" mr f t e s t : ")

s e t_save f i l e_path (" ${mnt}/ as " ,"/ save ")

se t_reques t f i l e_path (" ${mnt}/ as " ,"/ req ")

This enables some extra debug information whih is useful for testing, and loads

the autosave on-line status database. It also sets the loations where .sav and

.req �les will be searhed for.

s e t_pass0_res to reF i l e (" mrf_sett ings . sav ")

se t_pass0_res to reF i l e (" mrf_values . sav ")

se t_pass1_res to reF i l e (" mrf_values . sav ")

se t_pass1_res to reF i l e ("mrf_waveforms . sav ")

Sets three �les whih will be loaded. The �values� are loaded twies as is the

autosave onvention.

i o I n i t ()

makeAutosaveFileFromDbInfo(" as / req /mrf_sett ings . req " , " autosaveFie lds_pass0 ")

makeAutosaveFileFromDbInfo(" as / req /mrf_values . req " , " autosaveF ie lds ")

makeAutosaveFileFromDbInfo(" as / req /mrf_waveforms . req " , " autosaveFie lds_pass1 ")

After the IOC has started the request �les are generated. This is where the

�info()� entries in the database �les are used.

14

reate_monitor_set (" mrf_sett ings . req " , 5 , "")

reate_monitor_set (" mrf_values . req " , 5 , "")

reate_monitor_set ("mrf_waveforms . req " , 30 , "")

Finally the request �les are re-read and monitor sets are reated.

5 Testing Proedures

This setion presents several step by step proedures whih may be useful when

testing the funtion of hardware and software.

In the �doumentation/demo/� diretory several IOC shell sript �les with the

ommands given in this setion as well as other examples.

5.1 EVG and EVR Chekout

This proedure requires both a generator, reeiver, and a �ber jumper able to

onnet them.

It is assumed that no ables are onneted to the front panel of either EVG or

EVR. The example �ioBoot/ioevrmrm/st.md� sript is used with SYS=TST

and D=evr for the reeiver and D=evg for the generator. Verify this with the

following ommands at the IOC shell.

>dbgrep ("∗ Link : Clk−SP")

TST{ evr }Link : Clk−SP

>dbgrep ("∗FraSynFreq−SP")

TST{evg−EvtClk}FraSynFreq−SP

The following examples use the IOC shell ommands dbpr() and dbpf(). Re-

mote use of aput and aget is also possible.

>dbpf ("TST{evg−EvtClk}Soure−Se l " ," FraSyn ")

>dbpf ("TST{evg−EvtClk}FraSynFreq−SP" ,"125 .0")

>dbpf ("TST{ evr }Link : Clk−SP" ,"125 .0")

>dbpf ("TST{ evr }Ena−Se l " ," Enabled ")

>dbpr ("TST{ evr }Link−Sts ")

. . .

. . . VAL: 0

This sets the event link speed on both the EVR and EVG. The EVG is om-

manded to use its internal synthesizer instead of an external lok.

Now use the �ber jumper able to onnet the TX port of the generator to the

RX port of the reeiver. (The Tx port will have a faint red light oming from

it).

15

One onneted the red link fail LED should go o� and the link status PV

should read OK (1).

>dbpr ("TST{ evr }Link−Sts ")

. . .

. . . VAL: 1

At this point the reeivier has loked to the generator signal, but no data is

being sent. This inludes the heartbeat event. Thus the heartbeat timeout

ounter should be inreasing.

>dbpr ("TST{ evr }Cnt : LinkTimo−I ")

. . .

. . . VAL: 45

>dbpr ("TST{ evr }Cnt : LinkTimo−I ")

. . .

. . . VAL: 47

Now we will set up the generator to send a periodi event ode.

>dbpf ("TST{evg−Mx:0} Presa l e r−SP" , "125000000")

>dbpr ("TST{evg−Mx:0} Frequeny−RB" ,1)

. . .

EGU: Hz . . .

. . . VAL: 1

>dbpf ("TST{evg−TrigEvt :0} EvtCode−SP" , "122")

>dbpf ("TST{evg−TrigEvt :0} TrigSr−Se l " , "Mx0")

>dbpf ("TST{evg−TrigEvt :1} EvtCode−SP" , "125")

>dbpf ("TST{evg−TrigEvt :1} TrigSr−Se l " , "Mx0")

>dbpf ("TST{ evr }Evt : Blink0−SP" , "125")

This on�gures multiplexed ounter 0 (Mx #0) to trigger on the event lok

frequeny divided by 125000000. In this ase this gives 1Hz. Trigger event #0

is then on�gured to send event ode 122, and trigger event #1 to send ode

125, when Mx #0 triggers.

At this point both the EVG's amber EVENT OUT led and the EVR's EVENT

IN led should �ash at 1Hz.

For diagnostis the EVR's Blink0 mapping is on�gured to blink the EVR's

EVENT OUT led when event ode 125 is reeived. Setting to 0 will ause it to

stop blinking.

Event ode 122 is the heartbeat reset event. Sine it is being sent the link

timeout ounter should no longer be inreasing.

16

>dbpr ("TST{ evr }Cnt : LinkTimo−I ")

. . .

. . . VAL: 120

>dbpr ("TST{ evr }Cnt : LinkTimo−I ")

. . .

. . . VAL: 120

At this point, if the system is given an NTP server the EVG will get a orret

(but unsynhronized) time and messages similar to the following will be printed.

S ta r t i ng timestamping

episTime : Wed Jun 01 2011 17 :54 :53 .000000000

TS beomes va l i d a f t e r f a u l t 4de6b533

The �rst two lines ome from the EVG and indiate that it is sending a times-

tamp. The third line omes from the EVR and indiates that it is reeiving a

orret timestamp.

The ounter for the 1Hz event should now be inreasing.

>dbpr ("TST{ evr }1hzCnt−I ")

. . . VAL: 5

>dbpr ("TST{ evr }1hzCnt−I ")

. . . VAL: 6

5.2 Timestamp Test

An external 1Hz pulse generator is required for this test. It should be onneted

to front panel input 0 on the EVG. This is LEMO onnetor expeting a TTL

signal.

>dbpr ("TST{ evr }Link−Sts ")

. . .

. . . VAL: 1

If the event link status is not OK then perform setup as desribed in the previous

test.

Chek the urrent time soure status

>generalTimeReport (2)

Bakwards time e r r o r s prevented 0 t imes .

Current Time Prov ide r s : "EVR" , p r i o r i t y = 50

Current Time not a v a i l a b l e

"NTP" , p r i o r i t y = 100

17

Current Time i s 2011−06−02 10 : 2 3 : 2 6 . 0 58125 .

"OS Clok " , p r i o r i t y = 999

Current Time i s 2011−06−02 10 : 2 3 : 2 6 . 0 57101 .

Event Time Prov ide r s :

"EVR" , p r i o r i t y = 50

This shows that the NTP time soure is funtioning. This is required for this

test.

>dbpf ("TST{evg−TrigEvt :1} EvtCode−SP" , "125")

>dbpf ("TST{evg−TrigEvt :1} TrigSr−Se l " , "Front0 ")

>dbpf ("TST{ evr }Evt : Blink0−SP" , "125")

Sends event ode 125 on the rising edge for front panel input 0. For diagnostis

sets the blink mapping. If the led is not blinking then hek the 1Hz pulse

generator.

dbpr ("TST{ evr }Time : Valid−Sts ")

. . .

. . . VAL: 1

Indiates that the EVR has reeived a valid time

>generalTimeReport (2)

Bakwards time e r r o r s prevented 0 t imes .

Current Time Prov ide r s : "EVR" , p r i o r i t y = 50

Current Time i s 2011−06−02 10 : 2 6 : 5 0 . 6 83808 .

"NTP" , p r i o r i t y = 100

Current Time i s 2011−06−02 10 : 2 6 : 5 0 . 6 81220 .

"OS Clok " , p r i o r i t y = 999

Current Time i s 2011−06−02 10 : 2 6 : 5 0 . 6 83854 .

Event Time Prov ide r s :

"EVR" , p r i o r i t y = 50

Shows that a valid time is now being reported.

$ amonitor TST{ evr :3}Time−I

TST{ evr :3}Time−I 2011−06−02 10 : 3 2 : 1 1 . 9 99993 Thu , 02 Jun 2011 10 : 3 2 : 1 2 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 2 : 1 2 . 9 99993 Thu , 02 Jun 2011 10 : 3 2 : 1 3 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 2 : 1 3 . 9 99993 Thu , 02 Jun 2011 10 : 3 2 : 1 4 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 2 : 1 4 . 9 99993 Thu , 02 Jun 2011 10 : 3 2 : 1 5 −0400

The timestamp indiator reord takes its reord timestamp from the arrival of

the 125 event ode. As an be seen, this time is stored immediately before the

sub-seonds is zeroed. This an be veri�ed by swithing this.

18

$ aget TST{ evr :3}Time−I .TSE

TST{ evr :3}Time−I .TSE 125

$ aput TST{ evr :3}Time−I .TSE 0

Old : TST{ evr :3}Time−I .TSE 125

New : TST{ evr :3}Time−I .TSE 0

$ amonitor TST{ evr :3}Time−I

TST{ evr :3}Time−I 2011−06−02 10 : 3 5 : 3 1 . 0 05655 Thu , 02 Jun 2011 10 : 3 5 : 3 1 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 5 : 3 2 . 0 05655 Thu , 02 Jun 2011 10 : 3 5 : 3 2 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 5 : 3 3 . 0 05655 Thu , 02 Jun 2011 10 : 3 5 : 3 3 −0400

TST{ evr :3}Time−I 2011−06−02 10 : 3 5 : 3 4 . 0 05655 Thu , 02 Jun 2011 10 : 3 5 : 3 4 −0400

Now a time lathed by software when this reord is proessed. For real-time

system this time should be stable.

6 Firmware Update

6.1 PCIe-EVR-300DC, mTCA-EVR-300

These devies support upgrade of �rmware through PCIe register aess. As

suh, a failed upgrade will result in an unusable devie.

To test if a ard may be upgrade with this mehanism, run �ashinfo and

�ashread ommand. The following shows a devie whih an be upgraded.

ep i s> mrmEvrSetupPCI ("EVR1" , "03 : 0 0 . 0 ")

. . .

ep i s> f l a s h i n f o ("EVR1:FLASH")

Vendor : 20 (Miron)

Devie : ba

ID : 18

Capaity : 0x1000000

Se to r : 0x10000

Page : 0x100

S/N: 23 51 61 31 16 00 14 00 31 26 05 15 ee 45

ep i s> f l a sh r e ad ("EVR1:FLASH" , 0 , 64)

00090 f f 0 0 f f 0 0 f f 0 0 f f 0 0000 0161001 f

70636965 65767233 30306463 3b557365

7249443d 30584646 46464646 46460062

000 376b 37307466 62673637 36006300

ep i s>

Before upgrading, it is suggested to bakup the existing �rmware. If the size

of the existing �rmware is known, then this size an be used. Otherwise, use

the apaity reported by �ashinfo. All Xilinx bit �les for a partiular devie

typially have the same size.

In this example of a PCIe-EVR-300DC with the 207.0 �rmware, the exat size

is 3011417 bytes, whih is arbitrarily rounded up to 3MB.

19

ep i s> f l a sh r e ad ("EVR1:FLASH" , 0 , 0x300000 , "PCIe−EVR−300DC. 2 0 7 . 0 . bakup . b i t ")

| 3080192

. . .

Now write the new �rmware �le.

ep i s> f l a s hw r i t e ("EVR1:FLASH" , 0 , "PCIe−EVR−300DC. 2 0 7 . 6 . b i t ")

If the update proess is interrupted, do not power yle! Re-run the update

proess to ompletion.

After the write ompletes suessfully, power yle the ard to load the new bit

�le.

6.2 VME EVRs and EVGs

Update for VME ards is aomplished through the ethernet jak label �10

BaseT�. The proedure overed in the MRF manual.

6.3 PCI-EVRTG-300

Undoumented.

6.4 PMC-EVR-230

Firmware update for the PMC module EVR is aomplished through a JTAG

interfae as with the PCI-EVRTG-300. For reasons of physial spae the JTAG

wires are not brought to a onnetor, but onneted to 4 I/O pins of the PLX

9030 PCI bridge hip. In order to ontrol these pins and update the �rmware

some additional software is needed. Software update may be performed by using

either the parallel port support or through JTAG pins. The running Kernel must

be built with the CONFIG_GENERIC_GPIO and CONFIG_GPIO_SYSFS

options if the latter approah is to be used.

If the parallel port support is available, a message is printed to the kernel log

when the Linux kernel module provided with mr�o2 (mrmShared/linux) is

loaded.

Emulating ab l e : Minimal

The kernel module also exposes the 4 I/O pins via the Linux GPIO API. The

4 pins are numbered in the order: TCK, TMS, TDO, and TDI. The number of

the �rst pin is printed to the kernel log when the MRF kernel module is loaded.

20

GPIO setup ok , JTAG ava i l a b l e at b i t 252

In this example the 4 pins would be TCK=252, TMS=253, TDO=254, and

TDI=255.

6.4.1 Creating an SVF �le from a BIT �le

The �rmware �le will likely be supplied in one of two formats having the ex-

tensions .bit or .svf. If the provided �le has the extension .svf then proeed to

setion 6.4.2.

To onvert a .bit �le to a .svf �le it is neessary to get the iMPACT programming

tool from Xilinx. The easiest way to do this is with the �Lab Tools� bundle.

http://www.xilinx.om/support/download/index.htm

The following instrutions are for iMPACT version 14.2.

1. Install and run the iMPACT program.

2. When prompted to reate a projet lik anel

3. On the left side of the main window is a pane titled �iMPACT FLows�.

Double lik on �Create PROM File�

4. Selet �Xilinx Flash/PROM� and lik the �rst green arrow.

5. Selet �Platform Flash� and �xf08p� and lik �Add Storage Devie� then

the seond green arrow.

6. Selet an output �le name and path. Ensure that the �le format is MCS.

Clik OK

7. Several small dialogs will appear. When prompted to �Add devie� selet

the .bit �le provided by MRF.

8. When prompted to add another devie lik No.

9. On the left side of the main window is a pane titled �iMPACT Proesses�.

Double lik on �Generate File�.

10. The .ms �le should now be written.

11. Exit and restart iMPACT.

See http://www.xilinx.om/support/doumentation/user_guides/ug161.

pdf starting on page 67 for more detailed instrutions.

1. Create a new iMPACT projet. Selet �Prepare a Boundary-San File�

and the SVF format.

21

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com/support/documentation/user_guides/ug161.pdf
http://www.xilinx.com/support/documentation/user_guides/ug161.pdf

2. When prompted, selet a name for the resulting .svf �le

3. When prompted to �Assign New Con�guration File� selet the .ms �le

just reated.

4. When prompted to selet a PROM type hoose �xf08p�

5. An ion representing the PROM should now appear as the only entry in

the JTAG hain.

6. Right lik on this ion and selet Program.

7. In the dialog whih appears hek Verify and lik OK.

8. The .svf �le should now be written.

9. Exit iMPACT

6.4.2 Programming with UrJTAG

http://urjtag.org/

As of August 2012 support to the Linux GPIO �able� was not inluded in any

UrJTAG release. It is neessary to hekout and build the development version

(ommit id b6945f65 from 9 Aug. 2012 works). This requires the Git version

ontrol tool. To build and use UrJTAG on target system, there may be a need

to install ertain pakages in the system.

$ sudo apt−get i n s t a l l p i u t i l s make autoonf autopoint l i b t o o l

pkg− on f i g bison l ibusb−1.0−0−dev l ibusb−dev f l e x python−dev

With all neessary tools available, on�gure and build UrJTAG.

$ g i t l one g i t : // u r j t a g . g i t . s ou r e f o r g e . net / g i t r o o t / u r j t a g / u r j t a g

$ d u r j t a g / u r j t a g s

$. / autogen . sh −−d i sab l e−n l s −−d i sab l e−python −−p r e f i x=$PWD/usr

$ make && make i n s t a l l

Firmware update may be performed using the parallel port support if available,

e.g. when loading the kernel driver:

$ sudo modprobe uio

$ sudo modprobe parport

$ sudo insmod mrf . ko

$ dmesg

. . .

[69 .046938 ℄ mrf−p i 0000 :08 :0 d . 0 : MRF Setup omplete

[69 .047007 ℄ mrf−p i 0000 :09 :0 e . 0 : PCI IRQ 72 −> rerouted to l egay IRQ 16

22

http://urjtag.org/

[69 .047589 ℄ mrf−p i 0000 :09 :0 e . 0 : GPIOC 00249412

[69 .047626 ℄ mrf−p i 0000 :09 :0 e . 0 : GPIO setup ok , JTAG ava i l a b l e at b i t 252

[69 .144196 ℄ mrf−p i 0000 :09 :0 e . 0 : Emulating ab l e : Minimal

[69 .144239 ℄ mrf−p i 0000 :09 :0 e . 0 : MRF Setup omplete

. . .

The �Emulating able: Minimal� message indiates that Minimal JTAG able

type an be used to ommuniate with a devie. A ppdev devie should be

available for usage with UrJTAG:

$ sudo modprobe ppdev

$ dmesg

. . .

[69 .028268 ℄ ppdev : user−spae p a r a l l e l port d r i v e r

. . .

$ l s /dev | grep parport

parport0

On the target system run UrJTAG as root:

./ usr / bin / j t a g

jtag> ab l e Minimal ppdev /dev/ parport0

I n i t i a l i z i n g ppdev port /dev/parport0

jtag> dete t

IR length : 26

Chain l ength : 2

Devie Id : 00100001001000111110000010010011 (0 x2123E093)

Manufaturer : X i l inx (0 x093)

Part (0) : x2vp4 (0 x123E)

Stepping : 2

Filename : / ep i s / u r j t a g / share / u r j t a g / x i l i n x /x2vp4 /x2vp4

Devie Id : 11100101000001010111000010010011 (0 xE5057093)

Manufaturer : X i l inx (0 x093)

Part (1) : x f08p (0 x5057)

Stepping : 14

Filename : / ep i s / u r j t a g / share / u r j t a g / x i l i n x / xf08p / xf08p

jtag> part 1

jtag> sv f / l o a t i o n / o f /pm−prom . sv f stop p rog r e s s

Alternatively, a GPIO able may be utilized if the kernel was built with options

required (CONFIG_GENERIC_GPIO and CONFIG_GPIO_SYSFS), on the

target system run UrJTAG as root (or a user whih an export and use GPIO

pins).

./ usr / bin / j t a g

jtag> ab l e gpio tk=252 tms=253 tdo=254 td i=255

jtag> dete t

IR length : 26

Chain l ength : 2

Devie Id : 00100001001000111110000010010011 (0 x2123E093)

23

Manufaturer : X i l inx (0 x093)

Part (0) : x2vp4 (0 x123E)

Stepping : 2

Filename : / ep i s / u r j t a g / share / u r j t a g / x i l i n x /x2vp4 /x2vp4

Devie Id : 11100101000001010111000010010011 (0 xE5057093)

Manufaturer : X i l inx (0 x093)

Part (1) : x f08p (0 x5057)

Stepping : 14

Filename : / ep i s / u r j t a g / share / u r j t a g / x i l i n x / xf08p / xf08p

jtag> part 1

jtag> sv f / l o a t i o n / o f /pm−prom . sv f stop p rog r e s s

Note that the devie IDs may not be orretly reognized. This will not e�et

the programming proess.

If no errors are printed then the update proess was suessful. The new

�rmware will not be loaded until the PMC module is reset (power yle sys-

tem).

7 NTPD Time Soure

It is possible to use an EVR as a time soure for the system NTP daemon on

Linux. This is implemented using the shared memory lok driver (#28).

http://www.eeis.udel.edu/~mills/ntp/html/drivers/driver28.html

An IOC is on�gured to write data to a shared memory segment by adding a

line to its start sript.

time2ntp (" evrname " , N)

Here �evrname� is the same name given when on�guring the EVR (see 4.1).

The memory segment ID number N must be between 0 and 4 inlusive. The

NTP daemon enfores that segments 0 and 1 require root permissions to use.

Segments 2, 3, and 4 an be aessed by an unprivileged user.

It is suggested to use an unprivileged segment to avoid running the IOC as root.

However, this would allow any user on the system to e�etively ontrol NTPD.

So it is not reommended for systems with untrusted users.

The NTP daemon is on�gured from the �le /et/ntp.onf. On Debian Linux

systems using DHCP it will be neessary to modify /et/dhp/dhlient-exit-

hooks.d/ntp instead.

s e r v e r 127 . 1 27 . 2 8 .N minpol l 1 maxpoll 2 p r e f e r

fudge 127 . 1 27 . 2 8 .N r e f i d EVR

24

http://www.eecis.udel.edu/~mills/ntp/html/drivers/driver28.html

This will on�gure NTPD to read time from segment N. Here N must math

what was spei�ed for time2ntp().

When funtioning orretly NTPD status should look like:

$ ntpq −p

remote r e f i d s t t when p o l l reah delay o f f s e t j i t t e r

===

+time . s . n s l s 2 . l .GPS. 1 u 29 64 377 2.684 −0.001 0.089

∗SHM(3) .EVR. 0 l 7 8 377 0.000 0.000 0.001

The shared memory interfae an only be used to provide time with miroseond

preision. So this measurement, taken from a prodution NSLS2 server, showing

a jitter of ±1 miroseond is the best whih an be obtained.

If the propogation time from the time soure to the EVR is known, then the

o�set an be given by adding �time1 0.XXX� to the 'fudge' line in ntp.onf.

8 Implementation Details

Details of some parts of the driver whih may be useful in understanding (and

trouble shooting) the behavior of the driver.

8.1 Event ode FIFO Bu�er

Eah EVR implements a hardware First In First Out bu�er for event odes.

When ertain �interesting� event ode numbers are reeived the ode and arrival

time are plaed in this bu�er. Two interrupt ondition are generated by the

FIFO: not empty, and full. The �rst is asserted when the �rst event added, and

leared when the last event is removed. The seond ours when last free entry

in the bu�er is onsumed. Further event ourrenes are lost.

When the not empty interrupt ours the �fo drain task (named EVRFIFO in

episThreadShowAll()) is woken up by a message queue. This task runs at san

high priority (90). One awakened it will remove at most 512 event odes from

the bu�er before sleeping again. The number 512 is an arbitrary number hosen

to prevent the starvation of lower priority tasks if a high frequeny event ode

is aidentally mapped into the FIFO. A minimum sleep time is enfored by the

mrmEvrFIFOPeriod variable. This governs the maximum rate that events

an be reported through the FIFO. Setting to 0 will disable it.

Eah of the event odes 1-255 has an IOSCANPVT and a list of allbak fun-

tions (type EVR::eventCallbak) whih will be invoked when the event ours.

An invoation of an IOSCANPVT list may plae an arbitrary number of CALL-

BACKs into the message queue of the three EPICS allbak san tasks (High,

25

Medium, and Low). If these message queues are over�owed then CALLBACK

in other drivers my be lost. The sanIoRequest() funtion does not report this

error prior to Base 3.15.0.2.

To avoid this disastrous ourrene the EVR driver will not re-run the san

list for an event, until all ations at all priorities from the previous run have

�nished. This is implemented by plaing a speial sentinel CALLBACK in all

three queues. An event will not be re-run until all three of the CALLBACK

have run.

The FIFO serviing ode an indiate two error onditions. Ourrenes of

these errors are reorded in the FIFO Overflow Count and FIFO Over rate

ounters.

The FIFO Overflow Count gives the number of times the hardware FIFO bu�er

has over�owed. This is a serious error sine arbitrary event ode (inluding the

timestamping odes) will be lost.

The FIFO Over rate ounter ounts the number of times any event reourred

before the ations of the last ourrene were �nished proessing. This is less

serious sine other event odes are not e�eted.

8.2 Data Bu�er reeption

Eah EVR an reeive a single data bu�er. One a data message has been

reeived, the reeption engine is disabled to allow time to download the bu�er.

Then the engine an be re-enabled in preparation for the next message. An

interrupt is generated when the message has been fully reeived, and the engine

disabled.

Instead of a separate thread, bu�er reeption is implemented as a two stage

allbak run by the High (�rst) and Medium (seond) priority san tasks. The

�rst allbak opies the bu�er into memory and immediately re-enables bu�er

reeption, it then passes the data to the seond allbak. This allbak passes

the bu�er to a list of user allbak funtions whih have registered interest in

the Protool ID found in the message header.

8.3 Timestamp validation

It is impossible to verify a time without a seond trusted referene. Sine suh

a referene is not generally available, the driver an only make some heks

against orruption.

The seonds part of the timestamp should only hange when the 1Hz reset event

(125) is reeived from the EVG. Therefore a allbak is attahed to that event

ode. When a new seonds value arrives it is ompared to the previous stored

value. If it is exatly 1 greater then it is taken to be the new seonds value. If

it is not then the EVR time is delared invalid.

26

When the time is invalid, it an only beome valid after �ve sequential seonds

values are reeived. Any out of sequene value resets the ount.

9 EVR Devie Support Referene

The EPICS support module for MRF devies onsists of a number of supports

whih are generally tied to a spei� logial sub-unit. Eah sub-unit may be

thought of as an objet having a number of properties. For example, eah Delay

Generator has properties 'Delay' and 'Width'. These properties an be read or

modi�ed in several ways. A delay an spei�ed as an integer number of tiks

of its referene lok (hardware view), or in seonds as a �oating point number

(user view).

In this example the properties 'Delay' and 'Width' should be settable in exat

integer as well as the more useful, but impreise, �oating point units (eg. se-

onds). This needs to be aomplished by two di�erent devie supports (longout,

and ao). Of ourse it is also useful to have some on�rmation that settings have

been applied so read-baks are desireable (longin, ai).

Some of the devie supports de�ned are as follows. The full list is given in

mrfCommon/sr/mrfCommon.dbd.

dev i e (l ong in , INST_IO , devLIFromUINT32 , "Obj Prop uint32")

dev i e (l ong in , INST_IO , devLIFromUINT16 , "Obj Prop uint16")

dev i e (l ong in , INST_IO , devLIFromBool , "Obj Prop bool")

dev i e (a i , INST_IO , devAOFromDouble , "Obj Prop double")

dev i e (a i , INST_IO , devAOFromUINT32 , "Obj Prop uint32")

dev i e (a i , INST_IO , devAOFromUINT16 , "Obj Prop uint16")

Unless otherwise noted, all devie support use INST_IO input/output links

with the format:

�OBJ=$ (OBJECTNAME) , PROP=Property Name

Sine the Pulser sub-unit has the property 'Delay' whih supports both integer

and �oat settings, the following database an be onstruted.

reord (ao , "$(PN)Delay−SP")

{

f i e ld (DTYP, "Obj Prop double")

f i e ld (OUT , "�OBJ=$(OBJ) , PROP=Delay")

f i e ld (PINI , "YES")

f i e ld (DESC, "Pulse Generator $(PID)")

f i e ld (FLNK, "$(PN)Delay−RB")

}

27

reord (ai , "$(PN)Delay−RB")

{

f i e ld (DTYP, "Obj Prop double")

f i e ld (INP , "�OBJ=$(OBJ) , PROP=Delay")

f i e ld (FLNK, "$(PN)Delay :Raw−RB")

}

reord (longin , "$(PN)Delay :Raw−RB")

{

f i e ld (DTYP, "Obj Prop uint32")

f i e ld (INP , "�OBJ=$(OBJ) , PROP=Delay")

}

This provides setting in engineering units and readbaks in both EGU and raw

for the delay property.

Note: In is inadvisible to have to more then one output reord pointing to the

same property of the same devie. However, it is allowed sine there are ases

where this is desireable.

The following setions list the properties for all sub-units with funtional de-

sriptions.

9.1 Global

Properties in this setion apply to the EVR as a whole. The objet Name is given

as the �rst argument of mrmEvrSetupPCI() or mrmEvrSetupVME().

This name will be refered to afterwards as $(OBJ).

See: evrApp/Db/evrbase.db

Property Name Type(s) Writeable I/O Intr Notes

Enable bool Yes

PLL Lok Status bool No

Link Status bool No X

Timestamp Valid bool No X

Model uint32 No

Version uint32 No

Sw Version string No

FIFO Over�ow Count uint32 No

FIFO Over rate uint32 No

HB Timeout Count uint32 No X

Clok double Yes

Timestamp Soure uint32 Yes

Timestamp Clok double Yes

Timestamp Presaler uint32 No

Timestamp No

Event Clok TS Div uint32 No

Reeive Error Count uint32 No X

28

For example, the boolean property Enable ould be written by the following

reord.

r eo rd (bo , "$ (P) ena ") {

f i e l d (DTYP, "Obj Prop bool ")

f i e l d (OUT , "�OBJ=$ (OBJ) , PROP=Enable ")

. . .

}

9.1.1 Enable

Type(s): bool

Master enable for the EVR. If not set then very little will happen.

9.1.2 PLL Lok Status

Type(s): bool

This indiates whether the phase loked loop whih synhronizes an EVR's loal

osilator with the phase of the EVG's osilator. Outputs will not be stable unless

the PLL is loked.

Exept for immediately (≪ 1sec) after a hange to the frational synthesizer

this property should always read as true (loked). Reading false for longer then

one seond is likely an indiation that the frational synthesize is mison�gured,

or that a hardware fault has oured.

9.1.3 Link Status

Type(s): bool

Indiates when the event link is ative. This means that the reeiver sees light,

and that valid data is being deoded.

A reading of false may be aused by a number of onditions inluding: EVG

down, �ber unplugged or broken, and/or inorrent frational synthesizer fre-

queny.

9.1.4 Timestamp Valid

Type(s): bool

Indiates if the EVR has a urrent, valid timestamp. Condition under whih

the timestamp is delared invalid inlude:

29

• TS ounter reset event reeived, but �seonds� value not updated.

• Found timestamp with previous invalid value. Cathes old timestamp in

bu�ers.

• TS ounter exeeded limit (eg. missed reset event)

• New �seonds� value is less then the last valid values, or more then two

greater then the last valid value. (Light Soure time model only). This

will rejet single �bad� values sent by the EVG.

• Event Link error (Status is error).

The timestamp will beome valid when a new �seonds� value is reeived from

the EVG.

9.1.5 Model

Type(s): uint32

The hardware model number.

9.1.6 Version

Type(s): uint32

The �rmware version number.

9.1.7 Sw Version

Types(s): string

A string desribing the version of the driver software. This is aptured when

the driver is ompiled.

9.1.8 FIFO Over�ow Count

Type(s): uint32

Counter the number of hardware event bu�er over�ows. There is a single hard-

ware bu�er for all event odes. When it over�ows arbitrary events will fail to be

delivered to software. This an ause the timestamp to falsely be invalidated,

and an disrupt database proessing whih depends on event reeption.

This is a serious error whih should be orreted.

Note: An over�ow does not e�et physial outputs.

30

9.1.9 FIFO Over rate

Type(s): uint32

Counts over�ows in all of the per event software bu�ers.

This indiates that the period between suessive events is shorter then the

runtime of the ode (allbaks, and database proessing) that is auses. Extra

events are being dropped and ause no ation.

Ations of other event odes are not e�eted.

9.1.10 HB Timeout Count

Type(s): uint32

The number of times the hardware heartbeat timer has expired. This indi-

ates that the EVG is not sending event ode 122 whih may mean that it is

mison�gured or hung.

9.1.11 Clok

Type(s): double

Frequeny of an EVR's loal osilator. This must be lose enough to the EVG

master osilator to allow the phase loked loop in the EVR to lok.

The native analog units are Hertz (Hz). This an be hanged with the LINR

and ESLO �elds. Use ESLO of 1e-6 to allow user setting/reading in MHz.

9.1.12 Timestamp Soure

Type(s): uint32

Determines what auses the timestamp event ounter to tik. There are three

possible values.

Event lok Use an integer divisor of the EVR's loal osilator.

Mapped ode(s) Inrements the ounter whenever ertain events arrive. These

odes an be de�ned using speial mapping reords.

DBus 4 Inrements on the 0->1 transition of DBus bit #4.

31

9.1.13 Timestamp Clok

Type(s): double

Spei�es the rate at whih the timestamp event ounter will be inremented.

This determines the resolution of all timestamps.

This setting is used in onjuntion with the 'Timestamp Soure'.

When the timestamp soure is set to "Event lok" this property is used to

ompute an integer divider from the EVR's loal osilator frequeny to the

given frequeny. Sine this may not be exat it is reommended to read bak

the atual divider setting via the "Timestamp Presaler" property.

In all modes this value is stored in memory and used to onvert the timestamp

event ounter values from tiks to seonds.

By default the analog units are Hertz (Hz). This an be hanged with the LINR

and ESLO �elds. Use ESLO of 1e-6 to allow user setting/reading in MHz.

9.1.14 Timestamp Presaler

Type(s): uint32

When using the "Event lok" timestamp soure this will return the atual

divisor used. In other modes it reads 0.

9.1.15 Timestamp

Speial devie support.

When proessed reates a human readable string with either the urrent event

link time, or the event link time when ode # was last reeived. If Code is

omitted or 0 then the urrent wall lok time is used. Code may also have any

valid event number 1-255. Then it will print the time of the last reeived event.

r eo rd (s t r i n g i n , "$ (P)Time−I ")

{

f i e l d (DTYP, "EVR Timestamp")

f i e l d (INP , "�OBJ=$ (OBJ) , Code=0")

f i e l d (SCAN, "Event ")

f i e l d (EVNT, "$ (EVNT1HZ)")

}

9.1.16 Event Clok TS Div

Type(s): uint32

This is an approximate divider from the event link frequeny down to 1MHz. It

is used to determine the heartbeat timeout.

32

9.1.17 Reeive Error Count

Type(s): uint32

The number of event link errors whih have ourred.

9.2 EVG funtions (DC �rmware)

The PCIe-EVR-300DC and mTCA-EVR-300 provide one EVG style Sequener

RAM, as well as sending software triggered events upstream.

Property Name Type(s) Writeable Notes

DCEnable bool Yes Apply delay ompensation

DCTarget uint32 Yes Desired total delay

DCRx uint32 No Measured delay from root EVG/EVM

DCInt uint32 No Internal Delay

DCStatusRaw uint32 No DC status register (bitmask)

DCTOPID uint32 No Global topology ID

EvtCode uint32 Yes Send software event

TimeSr uint32 Yes Timestamp Transmision mode (enum)

NextSeond string No Next time whih will be sent and TimeSr!=0

Time Error double No Di�erene between system time and Tx'd time

Syn TS md Yes Syn Tx'd time to system time

See EVG doumentation for details. For details of sequener usage.

9.3 SFP

Information and status from the Small Form fator Plugable (SFP) transeiver

module. Aess to this feature requires EVR �rmward version 5 (starting with

25 May 2012). It is automatially disabled at runtime if an unsupported version

is deteted.

Property Name Type(s) Writeable Notes

Update bool Yes Triggers read of the SFP EEPROM

Vendor string No Module vendor name

Part string No Vendor's part number

Rev string No Part revision

Date string No Date of manufature

Serial string No SFP module serial number

Temperature uint32 No Module temperature in C

Link speed uint32 No Bit rate

Power TX uint32 No Optial power of SFP transmitter

Power RX double No Optial power seen by SFP reeiver

33

9.4 Pulse Generator

Properties in this setion apply to the Pulse Generator (Pulser) sub-unit named

$(OBJ):Pul# where # is a number between 0 and 15.

See: evrApp/Db/evrpulser.db

Property Name Type(s) Writeable I/O Intr Notes

Enable bool Yes

Polarity bool Yes

Presaler bool Yes

Delay double, uint32 Yes

Width double, uint32 Yes

For example, the property Delay ould be set by either of the following reords.

r eo rd (ao , "$ (D) ena ") {

f i e l d (DTYP, "Obj Prop double ")

f i e l d (OUT , "�OBJ=$ (OBJ) : Pul#, PROP=Enable ")

. . .

}

r eo rd (longout , "$ (D) ena ") {

f i e l d (DTYP, "Obj Prop uint32 ")

f i e l d (OUT , "�OBJ=$ (OBJ) : Pul#, PROP=Enable ")

. . .

}

9.4.1 Enable

Type(s): bool

When not set, the output of the Pulse Generator will remain in its inative

state (normally low). The generator must be enabled before mapped ations

will have any e�et.

9.4.2 Polarity

Type(s): bool

Reverses the output polarity. When set, hanges the Pulse Generator's output

from normally low to normally high.

9.4.3 Presaler

Type(s): uint32

Dereases the resolution of both delay and width by an integer multiple. De-

termines the tik rate of the internal ounters used for delay and width with

respet to the EVR's loal osillator.

34

9.4.4 Delay

Type(s): double and uint32

Determines the time between when the Pulse Generator is triggered and when

it hanges state from inative to ative (normally low to high).

This an be given in integer tiks, or �oating point seonds. This an be hanged

with the LINR and ESLO �elds. Use ESLO of 1e6 to allow user setting/reading

in miroseonds.

9.4.5 Width

Type(s): double and uint32

Determines the time between when the Pulse Generator hanges state from

inative to ative (normally low to high), and when it hanges bak to inative.

This an be given in integer tiks, or �oating point seonds. This an be hanged

with the LINR and ESLO �elds. Use ESLO of 1e6 to allow user setting/reading

in miroseonds.

9.5 Presaler (Clok Divider)

Properties in this setion apply to the Presaler sub-unit. Presaler objets are

named $(OBJ):PS# where # is between 0 and 2.

See: evrApp/Db/evrsale.db

9.5.1 Divide

Type(s): uint32

Sets the integer divisor between the Event Clok and the sub-unit output.

By default the analog units are Hertz (Hz). This an be hanged with the LINR

and ESLO �elds. Use ESLO of 1e-6 to allow user setting/reading in MHz.

9.6 Output (TTL and CML)

Properties in this setion apply to the Output sub-unit. Output objets are

named either $(OBJ):FrontOut#, $(OBJ):FrontOutUniv#, or $(OBJ):RearUniv#

where the range of number # depends on the hardware model.

See: evrMrmApp/Db/mrmevrout.db

35

9.6.1 Map

Type(s): uint32

The meaning of this value is determined by the spei� implimentation used.

For the MRM implimentation the following odes are valid.

Output Soure # Output Soure

63 Fore High 15 Pulse generator 15

62 Fore Low 14 Pulse generator 14

61 Tri-state 13 Pulse generator 13

42 Presaler (Divider) 2 12 Pulse generator 12

41 Presaler (Divider) 1 11 Pulse generator 11

40 Presaler (Divider) 0 10 Pulse generator 10

39 Distributed Bus Bit 7 9 Pulse generator 9

38 Distributed Bus Bit 6 8 Pulse generator 8

37 Distributed Bus Bit 5 7 Pulse generator 7

36 Distributed Bus Bit 4 6 Pulse generator 6

35 Distributed Bus Bit 3 5 Pulse generator 5

34 Distributed Bus Bit 2 4 Pulse generator 4

33 Distributed Bus Bit 1 3 Pulse generator 3

32 Distributed Bus Bit 0 2 Pulse generator 2

1 Pulse generator 1

0 Pulse generator 0

9.6.2 Enable

Type(s): bool

When set to True the mapping set with theMap property is used. When False

a mapping of Fore Low is used.

9.7 Output (CML/GTX only)

Additional properties for Current Mode Logi (CML) and GTX outputs. Out-

put objets are named either $(OBJ):FrontOut#, $(OBJ):FrontOutUniv#, or

$(OBJ):RearUniv# where the range of number # depends on the hardware

model.

See: evrApp/Db/evrml.db

36

Property Name Type(s) Writeable I/O Intr Notes

Enable bool Yes

Power bool Yes

Reset bool Yes

Mode uint16 Yes

Pat Rise UCHAR waveform Yes

Pat High UCHAR waveform Yes

Pat Fall UCHAR waveform Yes

Pat Low UCHAR waveform Yes

Waveform UCHAR waveform Yes

Pat Reyle bool Yes

Freq Trig Lvl bool Yes

Counts Init double, uint32 Yes

Counts High double, uint32 Yes

Counts Low double, uint32 Yes

Freq Mult uint32 No

9.7.1 Enable

Type(s): bool

Trigger permit.

9.7.2 Power

Type(s): bool

Current driver on.

9.7.3 Reset

Type(s): bool

Pattern reset.

9.7.4 Mode

Type(s): uint16

Selets CML pattern mode. Possible values are: 4x Pattern (0), Frequeny (1),

Waveform (2).

4x Pattern Uses the Pat Rise, Pat High, Pat Fall, and Pat Low properties to

store four 20 bit (0 -> 0x�f) sub-patterns.

Frequeny Uses the Freq Trig Lvl, Counts High, and Counts Low properties

Waveform Uses the bit pattern stored by the Pattern Set property.

37

9.7.5 Pat Rise/Pat High/Pat Fall/Pat Low/Waveform

Type(s): UCHAR waveform

Eah property stores a seperate bit waveform as an array of bytes.

The four patterns are 20 or 40 bit waveforms are sent one at either edge (ris-

ing/falling), and repeatidly when when at a stable level.

Rising and Falling patterns start as soon as the edge is deteted and will inter-

rupt the pattern urrently being sent.

The High and Low patterns are sent after an edge pattern is sent and will repeat

until the next edge.

The Waveform pattern is a variable length patten (max 40940 = 20 ∗ 2047 or

81880 = 40 ∗ 2047)

9.7.6 Pattern Reyle

Type(s): bool

In waveform mode a trigger ause the output to begin sending the pattern from

its start. When the end of the pattern is reahed the output will either go in

ative, or begin sending the pattern again, based on this property.

9.7.7 Freq Trig Lvl

Type(s): bool

When in frequeny mode and a trigger arrives the output is fored to this level.

9.7.8 Counts High/Low/Init

Type(s): uint32 or double

Stores a value whih is the number of ounts (uint32) or time (double) of the

high or low part of a square wave.

The number of tiks must be >20 or 40, whihever is the time of one period of

the event lok.

The Counts Init property holds the value whih is loaded into the ounter when

a trigger arrives. This allows for a phase di�erene between the output and the

trigger soure.

38

9.7.9 Freq Mult

Type(s): uint32

This read only property gives the multiplier for the CML/GTX output lok.

This will be either 20 (CML) or 40 (GTX).

9.8 Input

Properties in this setion apply to the Input sub-unit. Input objets are named

$(OBJ):FPIn# where the range of the number # depends on the hardware

model.

See: evrApp/Db/evrin.db

Property Name Type(s) Writeable I/O Intr Notes

Ative Level bool Yes

Ative Edge bool Yes

External Mode uint16 Yes

External Code uint32 Yes

Bakwards Mode uint16 Yes

Bakwards Code uint32 Yes

DBus Mask uint16 Yes

9.8.1 Ative Level

Type(s): bool

When operating in level triggered mode, determines if odes are sent when the

input level is low, or high.

9.8.2 Ative Edge

Type(s): bool

When operating in edge triggered mode, Determines if odes are sent on the

falling or rising edge in the input signal.

9.8.3 External Mode

Type(s): uint16

Selets the ondition, Level (1), Edge (2), or None (0), in whih to injet event

odes into the loal mapping ram. These odes are treated as odes oming

from the downstream event link.

39

9.8.4 External Code

Type(s): uint32

Sets the ode whih will be applied to the loal mapping ram whenever the

'External Mode' ondition is met.

9.8.5 Bakwards Mode

Type(s): uint16

Selets the ondition, Level (1), Edge (2), or None (0), in whih to send on the

upstream event link.

9.8.6 Bakwards Code

Type(s): uint32

Sets the ode whih will be sent on the upstream event link whenever the 'Bak-

wards Mode' ondition is met.

9.8.7 DBus Mask

Type(s): uint16

Sets the upstream Distributed Bus bit mask whih is driven by this input. DBus

bits from multiple soures are ondensed with a bit-wise OR.

9.9 Event Mapping

Properties in this setion desribe ations whih should be taken when an event

ode is reeived.

9.9.1 Pulse Generator Mapping

Speial devie support ating on pulser generator objets.

See: evrApp/Db/evrpulsermap.db

Causes a reeived event to trigger a Pulse Generator (Pulser) sub-unit, or fore

it into an ative (set) or inative (reset) state.

These reords will have DTYP set to "EVR Pulser Mapping".

Eah reord will ause one event to trigger, set, or reset one Pulse Generator. It

is possible (and likely) that more then one reord will interat with eah event

ode or Pulse Generator. However, eah pairing must be unique.

40

reord (longout , "(P)(N)$(M)") {

f i e ld (DTYP, "EVR Pulser Mapping")

f i e ld (OUT , "�OBJ=$(OBJ) :Pul0 , Fun=$(F=Trig)")

f i e ld (PINI , "YES")

f i e ld (DESC, "Mapping for Pulser $(PID)")

f i e ld (VAL , "$(EVT)")

f i e ld (LOPR, "0")

f i e ld (HOPR, "255")

f i e ld (DRVL, "0")

f i e ld (DRVH, "255")

}

In this example the event '$(EVT)' spei�ed in the 'VAL' �eld will ause funtion

'$(F)' on Pulse Generator # '$(PID)'. Current funtions are 'Trig', 'Reset', and

'Set'.

9.9.2 Speial Funtion Mapping

Speial devie supportating on global EVR objets.

See: evrApp/Db/evrmap.db

Allows a number of speial ations to be mapped to ertains events. These

ations inlude:

Blink An LED on the EVRs front panel will blink when the ode is reeived.

Forward The reeived ode will be immediately retransmits on the upstream

event link.

Stop Log Freeze the irular event log bu�er. An CPU interrupt will be raised

whih will ause the bu�er to be downloaded. This might be a useful ation

to map to a fault event.

Log Inlude this event ode in the irular event log.

Heartbeat This event resets the heartbeat timeout timer.

Reset PS Resets the phase of all presalers.

TS reset Transfers the seonds timestamp from the shift register and zeros the

sub-seonds part.

TS tik When the timestamp soure is 'Mapped ode' then any event with this

mapping will ause the sub-seonds part of the timestamp to inrement.

Shift 1 Shifts the urrent value of the seonds timestamp shift register up by

one bit and sets the low bit to 1.

Shift 0 Shifts the urrent value of the seonds timestamp shift register up by

one bit and sets the low bit to 0.

41

FIFO Bypass the automati alloation mehanism and always inlude this ode

in the event FIFO.

In the following example the front panel LED on the EVR will blink whenever

event 14 is reeived.

reord (longout , "$(P)map: blink") {

f i e ld (DTYP, "EVR Mapping")

f i e ld (OUT , "�OBJ=$(OBJ) , Fun=Blink")

f i e ld (PINI , "YES")

f i e ld (VAL , "14")

f i e ld (LOPR, "0")

f i e ld (HOPR, "255")

}

9.10 Database Events

Speial devie support ating on global EVR objets.

See: evrApp/Db/evrevent.db

A devie support for the 'event' reordtype is provided whih uses the Event

FIFO to reord the arrival of ertain interesting events. When set to SCAN

'I/O Intr' the event reord devie support will proess the reord ausing the

requested DB event. Supports setting it timestamp from devie support (set

TSE to -2).

reord (longout , "(P)(N)") {

f i e ld (DTYP, "EVR")

f i e ld (SCAN, "I/O Intr")

f i e ld (INP , "�OBJ=$(OBJ) , Code=$(CODE)")

f i e ld (VAL , "$(EVNT)")

f i e ld (TSE , "−2") # from dev ie support

f i e ld (FLNK, "(P)(N) : ount")

}

reord (a l , "(P)(N) : ount") {

f i e ld (SCAN, "Event")

f i e ld (EVNT, "$(EVNT)")

f i e ld (CALC, "A+1")

f i e ld (INPA, "(P)(N) : ount NPP")

f i e ld (TSEL, "(P)(N) .TIME")

}

In this example the hardware event ode '$(CODE)' will ause the database

event '$(EVNT)'.

Note: that while both '$(CODE)' and '$(EVNT)' are numbers, they need not

be the same. Hardware ode 21 an ause DB event 40.

42

9.11 Data Bu�er Rx

Reords assoiated with reeiving variable length data messages.

9.11.1 Enable

See: evrApp/Db/evrbase.db

Objet name $(OBJ):BUFRX

Type(s): bool

Selets Event link data mode. This hooses between DBus only (1) , and

DBus+Bu�er (0) modes. In DBus only mode Data Bu�er reeption is not

possible.

9.11.2 Data Rx

See: evrMrmApp/Db/mrmevrbufrx.db

Implemented for: waveform

When a bu�er with the given Protool ID is reeived a opy is plaed in this

reord. It is possible to have many reords reeiving the same Protool ID. Data

is reeived as a byte array and interpreted aording to FTVL. For multi-byte

types the transmission byte order is assumed to be big endian. Data is trunated

to a multiple of the element size.

Many reord (or other listeners) may register for the same Protool ID.

The speial Protool ID 0x�00 may be used to ause a listener to reeive mes-

sages destined for any ID.

Note: In order to avoid extra opy overhead this reord bypasses the normal

sanning proess. It funtion like �I/O Intr�, however the SCAN �eld should be

left as �Passive�.

reord (waveform , "$(P)dbus : rev :u32")

{

f i e ld (DESC, "Rev Buffer")

f i e ld (DTYP, "MRM EVR Buf Rx")

f i e ld (INP , "�OBJ=$(OBJ) , Proto=$(PROTO) , P=Data Rx")

f i e ld (FTVL, "ULONG")

f i e ld (NELM, "2046")

}

9.12 Data Bu�er Tx

Reords assoiated with sending variable length data messages.

This setion is shared between the EVR and EVG.

43

9.12.1 Outgoing Event Data Mode

See: mrmShared/Db/databuftxCtrl.db

Objet name $(OBJ):BUFTX

Type(s): bool

Selets Event link data mode. This hooses between DBus only (1), and DBus+Bu�er

(0) modes. In DBus only mode Data Bu�er transmission is not possible.

9.12.2 Data Tx

Speial devie support �MRF Data Buf Tx�.

See: mrmShared/Db/databuftx.db

This reords sends a blok of data with the given Protool ID. If FTVL spei�es

a multi-byte type then data will be onverted to big endian byte order for

transmission.

r eo rd (waveform , "$ (P) dbus : send : u32 ")

{

f i e l d (DESC, "Send Buf f e r ")

f i e l d (DTYP, "MRF Data Buf Tx")

f i e l d (INP , "�C=$ (C) , Proto=$ (PROTO) , P=Data Tx")

f i e l d (FTVL, "ULONG")

f i e l d (NELM, "2046")

}

44

	1 What is Available?
	1.1 Prerequisites
	1.2 Source
	1.3 Supported Hardware

	2 System Overview
	2.1 Event Link Data
	2.2 Global Time Distribution

	3 Receiver Functions
	3.1 Pulse Generators
	3.2 Event Mapping Ram
	3.3 Prescalers (Clock Divider)
	3.4 Outputs (TTL)
	3.5 Outputs (CML and GTX)
	3.6 Inputs
	3.7 Global Timestamp Reception
	3.8 Data Buffer Tx/Rx

	4 IOC Deployment
	4.1 Device names
	4.2 VME64x Device Configuration
	4.3 PCI Device Configuration
	4.4 PCI Setup in Linux
	4.5 Example Databases

	5 Testing Procedures
	5.1 EVG and EVR Checkout
	5.2 Timestamp Test

	6 Firmware Update
	6.1 PCIe-EVR-300DC, mTCA-EVR-300
	6.2 VME EVRs and EVGs
	6.3 cPCI-EVRTG-300
	6.4 PMC-EVR-230

	7 NTPD Time Source
	8 Implementation Details
	8.1 Event code FIFO Buffer
	8.2 Data Buffer reception
	8.3 Timestamp validation

	9 EVR Device Support Reference
	9.1 Global
	9.2 EVG functions (DC firmware)
	9.3 SFP
	9.4 Pulse Generator
	9.5 Prescaler (Clock Divider)
	9.6 Output (TTL and CML)
	9.7 Output (CML/GTX only)
	9.8 Input
	9.9 Event Mapping
	9.10 Database Events
	9.11 Data Buffer Rx
	9.12 Data Buffer Tx

